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Figure 1: Semantic Image Analogy: given a source image 𝐼 and its segmentationmap 𝑃 , along with another target segmentation
map 𝑃 ′, synthesizing a new image 𝐼 ′ that matches the appearance of the source image as well as the semantic layout of the
target segmentation. The transformations from 𝑃 to 𝑃 ′ and from 𝐼 to 𝐼 ′ are semantically “analogous”. 𝑃 ′ can be obtained by
editing 𝑃 (the first three cases) or from another image with a similar context (the last case).

ABSTRACT
Recent image-specific Generative Adversarial Networks (GANs)
provide a way to learn generative models from a single image in-
stead of a large dataset. However, the semantic meaning of patches
inside a single image is less explored. In this work, we first define
the task of Semantic Image Analogy: given a source image and its
segmentation map, along with another target segmentation map,
synthesizing a new image that matches the appearance of the source
image as well as the semantic layout of the target segmentation.
To accomplish this task, we propose a novel method to model the
patch-level correspondence between semantic layout and appear-
ance of a single image by training a single-image GAN that takes
semantic labels as conditional input. Once trained, a controllable
redistribution of patches from the training image can be obtained
by providing the expected semantic layout as spatial guidance. The
proposed method contains three essential parts: 1) a self-supervised
training framework, with a progressive data augmentation strategy
and an alternating optimization procedure; 2) a semantic feature
translation module that predicts transformation parameters in the
image domain from the segmentation domain; and 3) a semantics-
aware patch-wise loss that explicitly measures the similarity of
two images in terms of patch distribution. Compared with existing
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solutions, our method generates much more realistic results given
arbitrary semantic labels as conditional input.

CCS CONCEPTS
• Computing methodologies → Image manipulation.

KEYWORDS
image analogies; generative adversarial network; semantic manipu-
lation
ACM Reference Format:
Jiacheng Li, Zhiwei Xiong, Dong Liu, Xuejin Chen, Zheng-Jun Zha. 2020.
Semantic Image Analogy with a Conditional Single-Image GAN. In Pro-
ceedings of the 28th ACM International Conference on Multimedia (MM ’20),
October 12–16, 2020, Seattle, WA, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3394171.3413601

1 INTRODUCTION
Generative models like Variational Autoencoders (VAEs) [21] and
Generative Adversarial Networks (GANs) [12] have made great
progress on modeling the distribution of natural images in a gen-
erative way. With additional signals such as class labels [27], text
[44], edges [11], or segmentation maps [30, 39] as input, condi-
tional generative models can generate photorealistic samples in a
controllable manner, which is useful in a number of multimedia
applications such as interactive design [10, 11, 30] and artistic style
transfer [8, 43].

Specifically, segmentation maps provide dense pixel-level guid-
ance to generative models and enable users to control the expected
instances spatially [30, 39], which is much more flexible than image-
level guidance like class labels [27] or styles [19]. Generally, a large
training dataset is needed to map the segmentation labels to various
patch appearance across the dataset. However, the appearance of
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instances of a certain label in the generated images is limited to
what that label looks like in the training dataset, which thus limits
the generalization capability of these models in the wild.

Along the other line, recent efforts on image-specific GANs show
the possibility to learn a generative model from the internal patch
distribution of a single image. Progresses are made in a number of
tasks, e.g., retargeting [35], super-resolution [4], unconditioned im-
age generation and harmonization [34]. While these image-specific
GANs are dataset independent and generate promising results, the
semantic meaning of patches inside a single image remains less
explored.

In this work, we try to combine the advantages from both worlds:
with a conditional single-image GAN, we train a generative model
that generates semantically controllable images through segmen-
tation labels in the own context of a source image instead of ex-
ternal datasets. We show that a natural image is semantically self-
contained and it is feasible to find the patch-level semantic cor-
respondence between a single image and its segmentation map.
We name this task Semantic Image Analogy, as a variant of Image
Analogies [13] and define it as below.

Problem (“SEMANTIC IMAGE ANALOGY”): Given a source
image 𝐼 and its corresponding semantic segmentation map 𝑃 , along
with some additional semantic segmentation map 𝑃 ′, synthesizing
a new target image 𝐼 ′ such that

𝑃 ⇒ 𝑃 ′ :: 𝐼 ⇒ 𝐼 ′.

As illustrated in Figure 1, the target image 𝐼 ′ should match both
the appearance of the source image 𝐼 and the layout of the target
segmentation 𝑃 ′. Different from Image Analogies [13] which learns
a location-based filter shared between 𝑃 to 𝐼 and 𝑃 ′ to 𝐼 ′, our task
setting aims to find an “analogous” transformation from 𝐼 to 𝐼 ′ in
the same way transforming 𝑃 to 𝑃 ′. Furthermore, we suggest to
evaluate the quality of the generated images from Semantic Image
Analogy models with two metrics: a patch-level distance and a
semantic alignment score. The former restricts that the original
image 𝐼 is the only source for patches of the generated image 𝐼 ′,
while the latter enforces that the generated image 𝐼 ′ must have an
aligned semantic layout with the target segmentation map 𝑃 ′.

We cast the Semantic Image Analogy task as a patch-level distri-
bution matching problem with the guidance of transformation in
the semantic segmentation domain. To this end, we need to address
three major challenges: the source of paired data for training a
generative model from a single image, the condition scheme for
providing guidance from the segmentation domain to the image
domain, and the suitable supervision for the generated samples. To
accomplish this task, we propose a novel method integrating the
following three essential parts:

(1) We design a self-supervised training framework with a pro-
gressive data augmentation strategy. By alternating opti-
mization with the augmented segmentation and the original
one, we successfully train a conditional GAN from a single
image, which generalizes well on unseen transformations.

(2) We design a Semantic Feature Translation module that trans-
lates the transformation parameters from the segmentation
domain to the image domain.

(3) We design a semantics-aware Patch Coherence Loss, which en-
courages that the transformed image only contains patches

from the source image. Together with the semantic align-
ment constraint, it enables our generator to produce realistic
images with the target semantic layout.

In practice, we can either edit the source segmentation map
𝑃 or provide another image with a similar context to obtain the
target segmentation map 𝑃 ′. Our generator can then produce the
semantic-aligned image 𝐼 ′ from the source image 𝐼 analogous to
the way we obtain 𝑃 ′ from 𝑃 . Comparisons with existing methods
show the superiority of our method in terms of both quantitative
and qualitative evaluations. Thanks to our flexible task setting,
the proposed method can easily extend to various applications
including object removal [14, 41, 42], face editing [22], and sketch-
to-image synthesis [11] for images in the wild.

2 RELATEDWORK
2.1 Conditional GANs
GANs [12] have made a great success in image synthesis [5, 18, 19].
Conditional GANs synthesize images based on given conditions,
which can be class labels [27], text [18], edges [11, 16], or semantic
segmentation maps [30, 39]. Isola et al. show the power of condi-
tional GANs on generating images given dense condition signals
including sketches and segmentation maps [16]. Wang et al. ex-
tend the above framework with a coarse-to-fine generator and
multi-scale discriminators to generate images with high-resolution
details [39]. Park et al. propose a spatially-adaptive normalization
technique (SPADE) [30] that uses the semantic maps to predict
affine transformation parameters for modulating the activations
in normalization layers. Liu et al. extend SPADE by introducing
the conditional convolution block, which predicts convolutional
kernels, and the FPSE discriminator which injects segmentation
maps into discriminators for semantic alignment of target labels
and generated images [24]. Bau et al. apply a generative image prior
to semantic photo manipulation by adapting its image prior to the
statistics of the source image [3]. Albahar and Huang adopt the
FiLM [32] modulation layer into a spatial-varying manner and al-
low a bidirectional condition between the guidance and the source
image [1]. Exemplar-based models [25, 38] align the translated re-
sults with the exemplar domain both in style and semantic meaning.
However, these models are limited to the semantic meaning of the
training dataset, which are difficult to generalize to images in the
wild.

2.2 Single-Image GANs
Recently, image-specific GANs reveal the power of image priors
learned from the internal similarity of a single image instead of a
large external dataset [46]. InGAN [35] defines the transformation
of resizing and trains a generative model to capture the internal
patch statistics in the task of retargeting. SinGAN [34] utilizes
a multi-stage training scheme for unconditioned image genera-
tion which produces images of arbitrary size from noise. Kernel-
GAN [4] uses a deep linear generator and constrains it to learn an
image-specific degradation kernel for blind super-resolution. In our
method, we train a single-image GAN with the segmentation map
as dense conditional input, which explores the semantic meaning
of patches inside a single image.
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Figure 2: The proposed self-supervised training framework for our conditional GAN. At first, augmentation operations are
applied on the source image 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 and the source segmentation map 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 to obtain 𝐼𝑎𝑢𝑔 and 𝑃𝑎𝑢𝑔 as psuedo lables. Then, the
encoder 𝐸𝑠𝑒𝑔 extracts features 𝐹𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐹𝑎𝑢𝑔 from 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑃𝑎𝑢𝑔. The Semantic Feature Translation (SFT) module predicts
transformation parameters (𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔) from 𝐹𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐹𝑎𝑢𝑔. Finally, the generator 𝐺 maps 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 to the fake image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡
under the guidance of (𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔). At the same time, the discriminator 𝐷 tries to distinguish 𝐼𝑎𝑢𝑔 and 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 . The auxiliary
classifier 𝑆 predicts the semantic segmentation label 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 of 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 . The Semantic Alignment Loss between 𝑃𝑎𝑢𝑔 and 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡
and the Patch Cohernece Loss between 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 are calculated for self-supervision.

2.3 Image Analogies
Image Analogies is first introduced in [13], where a new “analogous”
image 𝐵 that relates to 𝐵′ in the same way as 𝐴 relates to 𝐴′. The
target image 𝐵 is computed by searching the best-matching patches
for each image location between 𝐴′ and 𝐵′, and then implying the
patch appearance for 𝐵 from the corresponding patch𝐴. Cheng et al.
extend the above algorithm with Markov Random Field and image
quilting to ensure the global and local consistency [9]. Reed et al.
study the inferring of the relationship like rotation between a pair of
images with the constraint inspired by the Natural Language Model
in synthetic datasets of geometry shapes and avatars [33]. Liao
et al. propose Deep Image Analogy [23] that utilizes a pre-trained
Network as the feature extractor and use PatchMatch [2] to find
feature-level correspondence between image 𝐴 and 𝐵′, and then
produce 𝐴′ and 𝐵 which transfers the visual attributes of original
images. Park et al. replace the CNN regression with the Gaussian
process to adjust the feature vectors which are used in creating a
filtered image [29]. In the task setting of Semantic Image Analogy, we
aim to learn an “analogous” relationship between transformations,
instead of a shared filter as in Image Analogies [13].

3 SEMANTIC IMAGE ANALOGY
3.1 Problem Formulation
We formulate the task setting of Semantic Image Analogy as follows.
Given a source image 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 and its segmentation map 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 ,
along with another target segmentation map 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 , synthesizing
a new target image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 such that the transformation from 𝐼𝑠𝑜𝑢𝑟𝑐𝑒
to 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 , denoted as T𝑖𝑚𝑔 , is "analogous" as the transformation
from 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 to 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 , denoted as T𝑠𝑒𝑔 . We model this process in

a generative way, i.e., we aim to find an optimal generator 𝐺 such
that

𝐼𝑡𝑎𝑟𝑔𝑒𝑡 = T𝑖𝑚𝑔 (𝐼𝑠𝑜𝑢𝑟𝑐𝑒 ) = 𝐺 (𝐼𝑠𝑜𝑢𝑟𝑐𝑒 |T𝑠𝑒𝑔)
𝑠 .𝑡 . 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = T𝑠𝑒𝑔 (𝑃𝑠𝑜𝑢𝑟𝑐𝑒 ).

(1)

Specifically, we model T𝑖𝑚𝑔 with a conditional single-image GAN,
where the generator 𝐺 maps 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 to 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 given T𝑠𝑒𝑔 as condi-
tional input.

To translate transformation T𝑠𝑒𝑔 in the segmentation domain to
T𝑖𝑚𝑔 in the image domain, we first extract features from segmenta-
tion maps and images with two Convolutional Neural Networks
(CNNs), by assuming that transformation T 𝑓 is linear in the feature
space F of either segmentation or image domain. We define T 𝑓 as

T 𝑓 : 𝑦 = 𝛾𝑥 + 𝛽,T 𝑓 ⊂ {F𝑊 ×𝐻×𝐶 ↦→ F𝑊 ×𝐻×𝐶 }, (2)

where𝑊 , 𝐻 , and 𝐶 denote the size of feature tensors 𝑥 and 𝑦 in
either segmentation or image domain.𝛾 can be regarded as a scaling
factor and 𝛽 a shifting factor. Next, we introduce a unique Semantic
Feature Translation (SFT) module, which converts the scaling and
shifting factors from the feature space of the segmentation domain
to that of the image domain

(𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔) = 𝑆𝐹𝑇 (𝛾𝑠𝑒𝑔, 𝛽𝑠𝑒𝑔). (3)

The transformation parameters (𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔) are then applied to
the features of 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 to obtain the features of 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 . Finally, the
features of 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 are mapped back to the image domain to produce
𝐼𝑡𝑎𝑟𝑔𝑒𝑡 with another CNN.

In the rest of this section, we describe three essential parts of the
proposed method in detail: the self-supervised learning framework,
the SFT module, and the loss terms.
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3.2 Self-supervised Learning Framework
As shown in Figure 2, we design a self-supervised framework for
training a conditional GAN from a single image. During each train-
ing iteration, we apply random augmentation like flipping and
rotation on 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 to obtain a pair of augmented im-
age 𝐼𝑎𝑢𝑔 and segmentation map 𝑃𝑎𝑢𝑔 as pseudo labels. We increase
the randomness of augmentation progressively during the training
process. Since our generator is an endomorphism, the source image
should be well reconstructed when 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 is the same as 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 .
Thus, we split our optimization procedure into two alternating
modes: sampling and reconstruction. In the sampling mode, the
generator takes the augmented transformation as guidance to pro-
duce a target image with the same appearance as 𝐼𝑎𝑢𝑔 and the same
semantic layout as 𝑃𝑎𝑢𝑔 . In the reconstruction mode, the generator
tries to reconstruct the source image, given that its conditional
input T𝑠𝑒𝑔 is an identity mapping.

3.2.1 The Alternating Optimization. In the sampling mode, given a
source image 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 and its segmentation map 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 , we first per-
form random augmentation to obtain 𝐼𝑎𝑢𝑔 and 𝑃𝑎𝑢𝑔 . Next, 𝑃𝑠𝑜𝑢𝑟𝑐𝑒
and 𝑃𝑎𝑢𝑔 are fed into the same encoder 𝐸𝑠𝑒𝑔 to extract features
𝐹𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐹𝑎𝑢𝑔 respectively. Then, the SFT module predicts the
transformation parameters (𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔) in the image domain from
extracted feature tensors 𝐹𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐹𝑎𝑢𝑔 . Finally, the generator
maps 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 into 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 under the guidance of (𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔). The
discriminator 𝐷 takes 𝐼𝑎𝑢𝑔 as a real sample and 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 as a fake
sample. Meanwhile, the generated image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 is also fed into the
auxiliary classifier 𝑆 to predict its segmentation map 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 . In the
reconstruction mode, we set 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑃𝑎𝑢𝑔 to be the same. The
transformationT𝑠𝑒𝑔 becomes an identity mapping and the generator
learns to reconstruct the source image.

3.2.2 Generator and Encoder. Our generator𝐺 adopts the Encoder-
Decoder architecture. The encoder 𝐸𝑠𝑒𝑔 uses the same structure
as the encoder part of the generator 𝐺 . 𝐸𝑠𝑒𝑔 takes segmentation
maps 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑃𝑎𝑢𝑔 as input to extract their features for inferring
transformation parameters (𝛾𝑠𝑒𝑔, 𝛽𝑠𝑒𝑔) in the segmentation domain,
which are then translated to (𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔) in the image domain by the
SFT module. In each downsampling stage of the encoder part in the
generator 𝐺 , we apply an affine transformation with parameters
(𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔) to image features extracted from 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 . Then the
decoder decodes these transformed image features to generate the
target image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 .

3.2.3 Discriminator and Auxiliary Classifier. Our discriminator 𝐷
is a fully convolutional PatchGAN [16], which predicts a score
map to distinguish real and fake samples. We use a light version
of the DeepLab V3 [7] architecture in our auxiliary classifier 𝑆 for
semantic segmentation. In the sampling mode, 𝑆 is trained with the
augmented image 𝐼𝑎𝑢𝑔 as input and the corresponding segmentation
map 𝑃𝑎𝑢𝑔 as label. Then, we predict the segmentation map 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡
of the generated image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 with 𝑆 .

3.3 Semantic Feature Translation
We explicitly translate the transformation parameters from the seg-
mentation domain to the image domain through the SFT module, as
shown in Figure 3. We model the transformation T𝑠𝑒𝑔 from 𝑃𝑠𝑜𝑢𝑟𝑐𝑒
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Figure 3: The Semantic Feature Translation (SFT) module.
The scaling factor 𝛾𝑖𝑚𝑔 is learned from the result of element-
wise division of the augmented segmentation features 𝐹𝑎𝑢𝑔
and the source segmentation features 𝐹𝑠𝑜𝑢𝑟𝑐𝑒 , while the shift-
ing factor 𝛽𝑖𝑚𝑔 is learned from the result of element-wise
difference. Then, we apply an affine transformation with
(𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔) on features in the image domain.

to 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 as a linear transformation at the feature level. Thus, af-
ter extracting features 𝐹𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐹𝑎𝑢𝑔 from segmentation maps
𝑃𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑃𝑎𝑢𝑔 via the encoder 𝐸𝑠𝑒𝑔 , we perform element-wise
division and difference on the feature tensors and define a feature
scaling tensor and a feature shifting tensor as

𝐹𝑠𝑐𝑎𝑙𝑒 =
𝐹𝑎𝑢𝑔

𝐹𝑠𝑜𝑢𝑟𝑐𝑒
, 𝐹𝑠ℎ𝑖 𝑓 𝑡 = 𝐹𝑎𝑢𝑔 − 𝐹𝑠𝑜𝑢𝑟𝑐𝑒 . (4)

We use 𝐹𝑠𝑐𝑎𝑙𝑒 and 𝐹𝑠ℎ𝑖 𝑓 𝑡 to approximate the scaling factor 𝛾𝑠𝑒𝑔
and the shifting factor 𝛽𝑠𝑒𝑔 of the transformation T𝑠𝑒𝑔 . Then Eq. (3)
becomes

(𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔) = 𝑆𝐹𝑇 (𝐹𝑠𝑐𝑎𝑙𝑒 , 𝐹𝑠ℎ𝑖 𝑓 𝑡 ). (5)

We model the translation process from the segmentation domain
to the image domain with two SFT blocks. The scaling factor 𝛾𝑖𝑚𝑔 is
translated from 𝐹𝑠𝑐𝑎𝑙𝑒 , while the shifting factor 𝛽𝑖𝑚𝑔 is from 𝐹𝑠ℎ𝑖 𝑓 𝑡 .
Following [32] and [1], we apply an affine transformation with
parameters (𝛾𝑖𝑚𝑔, 𝛽𝑖𝑚𝑔) in the generator 𝐺 . For the 𝑙-th downsam-
pling stage in 𝐺 , the output feature tensor is computed from the
input one as

𝐹 𝑙+1𝑖𝑚𝑔 = 𝐷𝑆𝑙 (𝛾𝑙𝑖𝑚𝑔

𝐹 𝑙
𝑖𝑚𝑔

−mean
(
𝐹 𝑙
𝑖𝑚𝑔

)
std

(
𝐹 𝑙
𝑖𝑚𝑔

) + 𝛽𝑙𝑖𝑚𝑔), (6)

where the transformation parameters (𝛾𝑙
𝑖𝑚𝑔

, 𝛽𝑙
𝑖𝑚𝑔

) are learned from
features of the 𝑙-th downsampling stage in 𝐸𝑠𝑒𝑔 and 𝐷𝑆𝑙 denotes
the convolutional layers of the 𝑙-th downsampling stage.

3.4 Loss Terms
According to the task setting of Semantic Image Analogy, the gen-
erated image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 should satisfy the following requirements: 1)
homogeneous appearance with the source image 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 , and 2)
aligned semantic layout with the target segmentation map 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 .
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Thus, we introduce 1) a Patch Coherence Loss that measures the sim-
ilarity of appearance between 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 , and 2) a Semantic
Alignment Loss that measures the consistency between 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 and
𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 which is predicted by the auxiliary classifier 𝑆 from 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 .
Next, we describe the constraints imposed in the sampling mode
and the reconstruction mode respectively.

3.4.1 Constraints in Sampling Mode. Inspired by [36], we propose
a Patch Coherence Loss to measure the similarity of appearance
between the generated image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 and the source image 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 .
This constraint will penalize the generator 𝐺 if it generates unde-
sired patches not found in 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 . It is defined as the average of
lower bounds of patch distance between 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 and 𝐼𝑠𝑜𝑢𝑟𝑐𝑒

L𝑝𝑎𝑡𝑐ℎ (𝐺) =
1

𝑁𝑡𝑎𝑟𝑔𝑒𝑡

∑
𝑉 ⊂𝐺 (𝐼𝑠𝑜𝑢𝑟𝑐𝑒 )

min
𝑈 ⊂𝐼𝑠𝑜𝑢𝑟𝑐𝑒&𝑈𝑐𝑙𝑎𝑠𝑠=𝑉𝑐𝑙𝑎𝑠𝑠

𝑑 (𝑉 ,𝑈 ),

(7)
where 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 is the number of patches inside image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 ,𝑈𝑐𝑙𝑎𝑠𝑠

and 𝑉𝑐𝑙𝑎𝑠𝑠 denote the segmentation labels of patches 𝑃 and 𝑄 , and
𝑑 (·) is a distance metric.

Our Patch Coherence Loss releases the location dependence of
pixel-wise distances. Instead, we regard an image as a bag of visual
features. For each patch𝑉 from 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 , we run a Nearest-Neighbour
search to find the closest patch 𝑈 with the same class label from
𝐼𝑠𝑜𝑢𝑟𝑐𝑒 and then take the average of their distance. Unlike [36], we
only search in the area with the same class label as𝑉 , which makes
our search process semantics-aware.

On the other hand, we use an auxiliary classifier 𝑆 to predict the
segmentationmap of the generated image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 . Thenwe calculate
the cross-entropy (CE) loss between the predicted segmentation
map and the augmented one 𝑃𝑎𝑢𝑔 . The Semantic Alignment Loss for
𝐺 is defined as

L𝑠𝑒𝑔 (𝐺) = 𝐶𝐸 (𝑃𝑎𝑢𝑔, 𝑆 (𝐺 (𝐼𝑠𝑜𝑢𝑟𝑐𝑒 ))). (8)

We train the auxiliary classifier 𝑆 with the augmented image
𝐼𝑎𝑢𝑔 as input and its segmentation map 𝑃𝑎𝑢𝑔 as label along with the
generator and the discriminator in the sampling mode, using the
following loss function

L(𝑆) = 𝐶𝐸 (𝑃𝑎𝑢𝑔, 𝑆 (𝐼𝑎𝑢𝑔)). (9)

In addition, we use the Least-Square GAN loss [26] L𝐺𝐴𝑁 (𝐺, 𝐷)
as the adversarial constraint, and take the features from the dis-
criminator to calculate the feature-matching loss L𝑓𝑚 (𝐺,𝐷) [17]
between the augmented image 𝐼𝑎𝑢𝑔 and the generated image 𝐼𝑡𝑎𝑟𝑔𝑒𝑡 .
To summarize, in the sampling mode, our total loss is

L𝑠𝑎𝑚𝑝𝑙𝑒

𝑡𝑜𝑡𝑎𝑙
= L𝑝𝑎𝑡𝑐ℎ (𝐺) + 𝜆𝑠𝑒𝑔L𝑠𝑒𝑔 (𝐺)
+ 𝜆𝐺𝐴𝑁L𝐺𝐴𝑁 (𝐺, 𝐷) + 𝜆𝑓𝑚L𝑓𝑚 (𝐺, 𝐷),

(10)

where 𝜆𝑠𝑒𝑔 , 𝜆𝐺𝐴𝑁 , and 𝜆𝑓𝑚 are tradeoff parameters.

3.4.2 Constraints in Reconstruction Mode. In the reconstruction
mode, we use the 𝐿1 loss to measure the reconstruction quality of
the generator as

L𝑟𝑒𝑐 (𝐺) = ∥𝐼𝑠𝑜𝑢𝑟𝑐𝑒 ,𝐺 (𝐼𝑠𝑜𝑢𝑟𝑐𝑒 |I)∥, (11)

where I denotes the identity mapping.
With 𝑃𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑃𝑎𝑢𝑔 being the same, the feature scaling tensor

𝐹𝑠𝑐𝑎𝑙𝑒 would be 1 and the feature shifting tensor 𝐹𝑠ℎ𝑖 𝑓 𝑡 would be 0
at every location. Thus, we enforce the transformation parameters

𝛾𝑖𝑚𝑔 and 𝛽𝑖𝑚𝑔 to be 1 and 0 in the image domain. This constraint
encourages minimal changes for feature tensors of 𝐼𝑠𝑜𝑢𝑟𝑐𝑒 in the
generator. We call it Fixed-Point Loss since the source image is
expected to be unchanged by 𝐺 when the condition input T𝑠𝑒𝑔 is
an identity mapping. This loss for the SFT module is defined as

L𝑓 𝑝 (𝑆𝐹𝑇 ) = ∥𝛾𝑖𝑚𝑔 − 1∥ + ∥𝛽𝑖𝑚𝑔 ∥. (12)

We also use L𝐺𝐴𝑁 (𝐺,𝐷) as the adversarial constraint. To sum-
marize, in the reconstruction mode, our total loss is

L𝑟𝑒𝑐
𝑡𝑜𝑡𝑎𝑙

= L𝑟𝑒𝑐 (𝐺) + 𝜆𝑓 𝑝L𝑓 𝑝 (𝑆𝐹𝑇 )
+ 𝜆𝐺𝐴𝑁L𝐺𝐴𝑁 (𝐺, 𝐷), (13)

where 𝜆𝑓 𝑝 and 𝜆𝐺𝐴𝑁 are tradeoff parameters.

4 EXPERIMENTS AND RESULTS
4.1 Implementation Details
We implement our framework based on Pytorch [31]. The generator
𝐺 is an Encoder-Decoder structure with 3 downsample blocks and
3 upsample blocks. The encoder 𝐸𝑠𝑒𝑔 shares the same structure
as the encoder part of the generator 𝐺 . The discriminator 𝐷 is a
PatchGAN [16] with 3 downsample blocks. Each block contains a
3 × 3 convolutional layer with stride 1, and a 4 × 4 convolutional
layer or a transposed convolutional layer with stride 2 for down-
sampling or upsampling. The starting channel number is 32 and
we double it during downsampling. Spectral Normalization [28],
Batch Normalization [15], and Leaky ReLU activation are used in
every block for encouraging stability. The auxiliary classifier 𝑆 is
a light version of DeepLab V3 [7] with 1/4 number of channels
compared to the original version. Similar to [1], the layer in SFT
blocks is composed of a bottleneck layer with 1 × 1 convolutions
whose number of channels is half of the input features.

We train our model in the reconstruction mode once every 10
iterations and in the sampling mode otherwise. During a single
iteration, we optimize the discriminator once and the generator 10
times. For augmentation, we apply random flip, resize, rotation, and
crop operations to the source image and its segmentation map with
the same seed. We increase the randomness of these operations
linearly as the training steps. This progressive strategy helps the
encoder learns the appearances of the source image in the early
iterations of training.

In all experiments, we set the tradeoff parameters in Eq. (10) and
Eq. (13) as 1.0. We use the ADAM [20] optimizer with a learning
rate of 0.0005. For the Patch Coherence Loss, we find empirically that
the features from a pre-trained VGG network [37] produce good
results, although other feature descriptors are also applicable. We
then calculate the 𝐿1 distance between the features of two patches.
We randomly choose 10 patches and 5 patches from the first two
stages of VGG as 𝑉 in Eq. (7), i.e., 𝑁𝑡𝑎𝑟𝑔𝑒𝑡 is set to 15. We train our
model above 2k iterations, which takes about 1-3 days on an Nvidia
Titan XP GPU, depending on the resolution of the source image.

4.2 Quantitative Results
We apply the proposed Semantic Image Analogy on images from dif-
ferent datasets, including COCO-Stuff [6], ADE20K [45], CelebAMask-
HQ [22] and theWeb. The results of ourmethod alongwithmethods
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Source Target Target Layout OursIA [13] DIA [23]

Figure 4: Visual quality comparison with IA [13] and DIA [23] using the segmentation map of anther image as target layout.
Image sources: COCO-Stuff [6] dataset.

OursSource Target LayoutEdited Source OursIA [13] SinGAN [34]

Figure 5: Visual quality comparison with IA [13] and SinGAN [34] when applying copy-and-paste operations on the segmen-
tation maps. Image sources: the Web.

in comparison are evaluated in the following two aspects: 1) ap-
pearance similarity between the source image and the target image;
and 2) semantic consistency of the target image with the target
segmentation map.

Table 1: Quantitative comparisons of appearance similar-
ity from user study and semantic consistency measured by
pixel accuracy and mean IOU.

IA [13] DIA [23] Ours
Avg. User Ranking ↓ 2.26 2.005 1.735
Pixel-wise Accuracy ↑ 43.9 41.9 54.0

Mean IOU ↑ 44.0 38.7 45.7

4.2.1 User study. To evaluate the appearance similarity of the gen-
erated image to the source image, we conduct a user study in the
following way.We randomly select 10 pairs of images with the same
class labels from the COCO-Stuff [6] dataset. For each pair, with
one image as source and the other for providing the target layout,
we transfer the source image to the layout of the other image using
our method, Image Analogies (IA) [13] and Deep Image Analogy
(DIA) [23]. IA and DIA are the two most related works to ours. Note
that DIA needs a pair of images as source and target, while our
method and IA only need one source image and two segmentation
maps. We display the results in random order and ask 20 users to
rank the appearance similarity with the source image as reference.
Then we calculate the average ranking of each method across all
images and users. Table 1 shows the superiority of the proposed
method against the two competitors.
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Source OursTarget Layout IA [13] SPADE [30]

Figure 8: Visual quality comparison with IA [13] and SPADE [30]. The images are from the COCO-Stuff [6] dataset and the
ADE20K [45] dataset.
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Figure 9: Semantic manipulation results. We can manipulate the image by moving, resizing, or changing shapes of instances
in the source segmentation map. The images are from the Web.

4.2.2 Pixel-wise accuracy and mean IOU. To evaluate the semantic
consistency of the generated images with the target segmentation
map, we use Detectron2’s panoptic segmentation model [40] to
predict the segmentation maps of generated images and then calcu-
late pixel-wise accuracy and mean Intersection-over-Union (mIOU)
with the target segmentation map [24, 30]. The images for evalua-
tion are the same as those in the user study. As shown in Table 1,
the proposed method achieves the highest accuracy.

4.3 Qualitative Results
4.3.1 Comparison to previous image analogies. Our task setting of
Semantic Image Analogy is closet to that of IA [13], in which the
target segmentation map can be arbitrary. The other closely related
work, DIA [23], requires a pair of images as source and target. For
a fair comparison with DIA, we use the segmentation map from
this “paired image” as the target layout of our method and IA. As
shown in Figure 4, our method produces both natural and semantic
aligned results, while DIA produces unrealistic results when the
source image and the target image are not semantically similar and
IA tends to fill the changed instance with repeated textures.

4.3.2 Comparison to single-image GANs. We also compare our
method with the versatile single-image generative model SinGAN
[34], especially its editing application. To obtain a fair comparison
with SinGAN, we only apply the "copy-and-paste" operation on
the source segmentation map to produce the target segmentation
map. Meanwhile, the same operation is applied to the source im-
age to produce the edited source image. Following the settings in
SinGAN [34], we first train a single-image generative model on the
source image and then inject a downsampled version of the edited
source image into the early coarse scales of the trained model. As
shown in Figure 5, the SinGAN editing often changes the unedited
area and produces undesired textures, or simply blurs the pasted
objects, without consideration of the semantic structure, which
leads to a very similar version of the edited result. In contrast, our
method resembles the patches from the source image according to
the guidance of the target semantic layout and generates semanti-
cally meaningful regions. As an accompanying comparison, IA [13]
often produces averaging textures when the area with the same
segmentation label is relatively large.
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Figure 10: Object removal. The images are from the Web.

Source Target #1 Target #3Target #2

Figure 11: Face editing. The images are from the
CelebAMask-HQ [22] dataset.

4.3.3 Comparison to conditional GANs. To compare with condi-
tional image synthesis models which convert segmentation maps
into images leveraging an external dataset, we inference the SPADE
model [30], which is trained on landscape images from Flickr, with
the target segmentation map as input. As shown in Figure 8, while
the generated results of this conditional model are semantically
consistent with the target segmentation, their content is limited to
the training dataset and loses the appearance of the source image.
Our method produces images that are faithful to the source images
in terms of appearance and semantically aligned with the target
segmentations. As an accompanying comparison, IA [13] fails to
preserve the local appearance of changed instances.

4.3.4 Semantic manipulation results. Our method enables semantic
manipulation of images through their segmentation maps. We can
either move, resize, or remove instances in the source segmentation
map to obtain the target layout. As shown in Figure 9, our method
produces quality results with arbitrary semantic changes while the
local appearance of the changed instance is well preserved.

IsourcePsource Ptarget Itarget

Figure 12: Sketch-to-image synthesis. The images are from
the Pix2pix work [16].

IsourcePsource Ptarget Itarget

Figure 13: Failure case when a relatively small object has
unique fine structures.

4.4 Applications
Our flexible task setting of Semantic Image Analogy enables various
applications. Thanks to the dense conditional input, we can resem-
ble the patches inside the image with pixel-level control. In Figure
10, 11 and 12, we show three applications of our method, including
1) object removal, where we can easily remove the undesired object
by modifying the class labels in the segmentation map into the
background class, 2) face editing, where we can edit facial images
by changing the shapes of face components in the segmentation
map, and 3) sketch-to-image synthesis, where we can use other
spatial conditions like edge maps as conditional input.

4.5 Limitations
Our method suffers in scenarios where a relatively small object
has unique fine structures. The SFT module may not be able to
capture the unique appearance within the limited segmentation
label. In Figure 13, we show such a case where the skier is not well
reconstructed after pose change, especially the ski poles and the
ski boards with fine structures.

5 CONCLUSION
In this paper, we define the Semantic Image Analogy task and pro-
pose a self-supervised framework that learns the semanticallymean-
ingful dense correspondences between an image and its segmenta-
tion map. As demonstrated by extensive experiments and applica-
tions, our model generates quality results with dense control of the
spatial condition in the context provided by a single image, which
can be hardly achieved with existing models.
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